The Run II Physics Program

John Womersley

Fermi National Accelerator Laboratory, Batavia, Illinois

Representing the CDF and DØ collaborations

Not the "Run IIb" physics program ...

- There is a single Tevatron physics program which evolves as a function of luminosity
 - There is interesting physics at all luminosities, starting now with 50-100 pb⁻¹ and continuing through 0.3, 1, 2, 5, 10, 15 fb⁻¹
- This physics program has begun
- The goal of the Run IIb detector upgrades is to
 - maximize this physics program
 - exploit the full potential of the world's highest energy collider and the large investments we have made in the accelerator and detectors
 - <u>Lay a firm foundation</u> for the LHC and for future initiatives at the TeV scale

Big Questions at the Electroweak Scale

- The Tevatron is the only accelerator in operation that can help to answer
 - What is the structure and what are the symmetries of space-time?
 - Why is the weak force weak?
 - What is cosmic dark matter made of?

About six to seven times more mass in the universe (27±4%) than there is baryonic matter (4.4±0.4%)

What is this stuff? How can we get a firmer understanding of it?

Accelerators

Run II is the only opportunity to make such a major discovery in the USA

The program

- The Run II Physics program
 - Confronts the standard model through precise measurements
 - the strong interaction, the quark mixing matrix, the electroweak force and the top quark
 - Directly searches for particles and forces not yet known,
 - Those predicted and those that would come as a surprise
- The program was laid out in a series of workshops between 1998 and 2000
 - http://fnth37.fnal.gov/run2.html
- The program stretches from the GeV scale to the TeV scale
- Here I can attempt only a superficial survey and will concentrate on the physics that gains most from luminosity
 - To see the full breadth of the program, I encourage you to visit the APS/DPFmeeting next week
 - ~110 talks from CDF and DØ!

Two Worldwide Collaborations

More than 50% non-US: a central part of the World Program

12 countries, 59 institutions 706 physicists

18 countries, 78 institutions 650 physicists

Operations Status

- Both experiments are operating well and recording physics quality data with high (85-90%) efficiency and record luminosities
- 50-90 pb⁻¹ being used for analysis
- Data are being reconstructed within a few days

The Top Quark

- Why, alone among the elementary fermions, does the top quark couple strongly to the Higgs field?
 - Is nature giving us a hint here?
 - Is the mechanism of fermion mass generation indeed the same as that of EW symmetry breaking?
 - The top is a window to the origin of <u>fermion</u> masses
- The Tevatron Collider is the world's only source of top quarks
- We will measure its
 - Mass
 - Production cross section
 - Spin
 - Through top-antitop spin correlations
 - Electroweak properties
 - Through single top production

The Run II Top Physics Program has begun

The top quark rediscovered, 2003

Cross section

CDF dileptons $\sigma = 13.2 \pm 5.9_{stat} \pm 1.5_{sys} pb$ CDF $l + jets \ \sigma = 5.3 \pm 1.9_{stat} \pm 0.8_{sys} \pm 0.8_{lum} pb$ DØ $\sigma = 8.4^{+4.5}_{-3.7} (stat)^{+5.3}_{-3.5} (syst) \pm 0.8 (lumi) pb$

o (pb)

CDF mass

$$M_{top} = 171.2^{+14.4}_{-12.5 \text{ stat}} \pm 9.9_{sys} \text{ GeV/c}^2$$

Top mass

- We can look forward to improved precision on m_t in the near future
 - More data (few hundred pb⁻¹)
 - Expect ~ 500 b-tagged lepton+jets events per experiment per fb⁻¹
 - cf. World total at end of Run I ~ 100
- Improved techniques
 - e.g. new DØ Run I mass measurement is equivalent to a factor 2.4 in statistics:

$$m_{top} = 179.9 \pm 3.6$$
 (stat) GeV/c² (5.6 GeV from PRD 58 052001,1998)

Improved top mass measurements help to constrain the Higgs mass

	Δm_t	(using the	"classic"	' technique)
2 fb ⁻¹	± 2.7 GeV			
15 fb ⁻¹	± 1.3 GeV			

Top physics program

- Precise knowledge of m_t (~1 GeV) will be very useful even after a light Higgs is discovered
 - Is it H_{SM} or SUSY h?
 - Constrain the stop sector: [M. Beneke et al., hep-ph/0003033]

- Single top production
 - So far unobserved
 - With ~ 1 fb⁻¹ should be able to see signals for both s and t-channel production (have different sensitivity to new physics)

	∆σ (s)	$\Delta V_{tb} $ (s)	Δσ (t)	$\Delta V_{tb} (t)$
2 fb ⁻¹	21%	12%	12%	10%
10 fb ⁻¹	9%	6%	5%	8%

[scaled from T. Stelzer, Z. Sullivan and S. Willenbrock, Phys. Rev. **D58**, 094021 (1998)]

- Top spin correlations
 - With 2fb⁻¹, can distinguish spin- $\frac{1}{2}$ from spin-0 only at the 2 σ level

Electroweak Physics

- In Run II we will complement direct searches for new phenomena with indirect probes
 - New particles and forces can be seen indirectly through their effects on electroweak observables.
 - Tightest constraints come from improved determination of the masses of the W and the top quark.
- Both experiments have preliminary results from Run II samples of W and Z candidates:

Prospects for W mass

Current knowledge of m_w

- DØ:
 - 80 483 \pm 84 MeV
- hadron colliders:
 - 80 454 \pm 59 MeV
- World (dominated by LEP)
 - 80 451 \pm 33 MeV

Run II prospects

(per experiment)

 Δm_W 2 fb⁻¹ ±27 MeV
15 fb⁻¹ ±15 MeV

We have shown we can measure the W mass precisely at the Tevatron, but to improve on LEP will require ~ fb⁻¹ datasets - not a short term goal

Other electroweak measurements

Forward-backward asymmetry in Z → ee

Multiboson production, boson plus jets...

QCD

- No one doubts that QCD describes the strong interaction between quarks and gluons
 - Its effects are all around us:
 - masses of hadrons (stars and planets)
 - But it is not an easy theory to work with
- Use the Tevatron to
 - Test QCD itself
 - Understand some outstanding puzzles from Run I
 - Develop the expertise to calculate, and confidence in, the backgrounds to new physics

Some QCD Physics goals for Run II

John Womerslev

Jets in Run II

Jonn womersiey

DØ Run II Preliminary

Searches for New Physics

- The Tevatron, as the world's highest energy collider, is the most likely place to directly discover a new particle or force
- We know the SM is incomplete
 - Most popular extension: supersymmetry
- Predicts multiple Higgs bosons, strongly interacting squarks and gluinos, and electroweakly interacting sleptons, charginos and neutralinos
 - masses depend on unknown parameters,
 expected to be 100 GeV 1 TeV

Lightest neutralino is a good candidate for cosmic dark matter Potentially discoverable at the Tevatron

Supersymmetry signatures

- Squarks and gluinos are the most copiously produced SUSY particles
- As long as R-parity is conserved, cannot decay to normal particles
 - Jets plus missing transverse energy signatures

Make dark matter at the Tevatron!

Detect its escape from the detector

Possible decay chains always end in the LSP

Search region typically > 75 GeV

Searching for squarks and gluinos

Chargino/neutralino production

- "Golden" signature
 - Three leptons
 - very low standard model backgrounds
- This channel becomes increasingly important as squark/gluino production reaches its kinematic limits (masses ~ 500 GeV)

Reach on χ^{\pm} mass, 2fb⁻¹ ~ 180 GeV (tan β = 2, μ < 0) \sim 150 GeV (large tan β)

Searches have begun. So far number of events is consistent with expectations — we need a lot more data, ET (GeV) but the tools are in place **Run II Trilepton candidate**

2 to 10 fb⁻¹

Other Searches at the Tevatron

- Other Tevatron search channels for SUSY
 - GMSB → Missing E_T + photon(s)
 - Stop, sbottom
 - RPV signatures
- Searches for other new phenomena
 - leptoquarks, dijet resonances,
 W',Z', massive stable particles,
 doubly charged particles...

Close to Run I limits!

CDF Run II $Z' > 650 \text{ GeV/}c^2$

Cf. Run I: 640/670 GeV/c² (CDF/D0)

Extra Dimensions

- Run II is also testing the new and exciting idea of extra dimensions
 - Can gravity propagate in more than four dimensions of spacetime?
 - If these dimensions are not open to the other SM particles and forces, we would not perceive them
 - Particle physics experiments at the TeV scale could see effects (direct and indirect)
 - Measure the structure of space-time!

	GRW	HLZ for n:		Hewett
		2	7	$\lambda = +1$
diEM	1.12	1.16	0.89	1.00
diMU	0.79	0.68	0.63	0.71

With 300 pb⁻¹, we probe up to 1.6 TeV With 2 fb⁻¹, we probe up to 2 TeV

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Signature-based searches

We need to ensure that our searches are not constrained by our preconceptions of what might be "out there."

CDF dilepton top events

Follow up anomalies in Run I data, and set model-independent limits

"Sleuth" framework used very successfully by DØ in Run I

⊭_ (GeV)

The Higgs Boson

- In the Standard model, the weak force is weak because the W and Z gain mass from a scalar field that fills the universe
- The same field is responsible for the mass of the fundamental fermions
- If it exists, we can excite the field and observe its quanta in the lab
 - The Higgs boson
 - Last piece of the SM
 - Key to understanding beyond-the-SM physics like supersymmetry: a light Higgs is a basic prediction of SUSY
- All the properties of the Higgs are fixed in the SM with the exception of its own mass: simulations have no free parameters

Higgs Hunting at the Tevatron

- For any given Higgs mass, the production cross section and decays are all calculable within the Standard Model
- Inclusive Higgs cross section is quite high: ~ 1pb
 - for masses below ~ 140 GeV,
 the dominant decay is H → bb
 which is swamped by background
 - at higher masses, can use inclusive 10 production plus WW decays
- The best bet below ~ 140 GeV appears 10⁻³
 to be associated production of H plus
 a W or Z
 - leptonic decays of W/Z help give the needed background rejection
 - cross section ~ 0.2 pb

Dominant decay mode

$m_H \lesssim 140 \text{ GeV: H} \rightarrow \overline{b}b$

- WH \rightarrow $\bar{q}q'$ $\bar{b}b$ is the dominant decay mode but is overwhelmed by QCD background
- WH $\rightarrow 1^{\pm}v$ bb backgrounds W bb, WZ, tt, single top
- ZH \rightarrow 1⁺1⁻ bb backgrounds Z bb, ZZ, $\overline{t}t$
- ZH $\rightarrow vv$ bb backgrounds QCD, Z bb, ZZ, $\overline{t}t$
 - powerful but requires relatively soft missing E_⊤ trigger (~ 35 GeV)

 $2 \times 15 \text{fb}^{-1} (2 \text{ experiments})$

$m_H \gtrsim 140 \text{ GeV} : H \rightarrow WW^{(*)}$

• $gg \rightarrow H \rightarrow WW^{(*)} \rightarrow 1^+1^- \nu\nu$

Backgrounds Drell-Yan, WW, WZ, ZZ, tt, tW, $\tau\tau$ Initial signal:background ratio $\sim 10^{-2}$

Angular cuts to separate signal from "irreducible" WW background

$$M_{C} = cluster \ transverse \ mass = \sqrt{p_{T}^{2}(\ell\ell) + m^{2}(\ell\ell)} + E_{T}$$

The famous Higgs Reach plot

CDF and DØ have a joint effort underway to re-evaluate some key channels in this Higgs reach plot. Results by ~ June.

- To make this a reality, we need
 - Two detectors
 - Good Resolutions
 - Good b-jet and lepton identification
 - Triggers efficient at high luminosities
 - Good understanding of all the backgrounds:

SUSY Higgs Production at the Tevatron

bb(h/H/A) enhanced at large tan β:

• $\sigma \sim 1$ pb for $tan\beta = 30$ and $m_h = 130$ GeV

 $bb(h/A) \rightarrow 4b$

What if we see nothing?

As long as we have adequate sensitivity, exclusion of a Higgs would itself be a very important discovery for the Tevatron

- In the SM, can exclude most of the allowed mass range with 10 fb⁻¹
- In the MSSM, can potentially exclude
 all the remaining parameter space with 5 10 fb⁻¹
- Would certainly make life "interesting" for SUSY at the TeV scale

Exclusion and discovery for SUSY Higgs sector, maximal stop mixing, sparticle masses = 1 TeV

Run II Physics Program

15 fb⁻¹

- 5σ Higgs signal @ m_H = 115 GeV
- 3σ Higgs signal @ m_H = 115-135, 150-175 GeV
- · Reach ultimate precision for top, W, B physics

10 fb-1

- 3σ Higgs signal @ m_H = 115-125, 155-170 GeV
- Exclude Higgs over whole range of 115-180 GeV
- Possible discovery of supersymmetry in a larger fraction of parameter space

5 fb⁻¹

- 3σ Higgs signal @ m_H = 115 GeV
- Exclude SM Higgs 115-130, 155-170 GeV
- · Exclude much of SUSY Higgs parameter space
- Possible discovery of supersymmetry in a significant fraction of minimal SUSY parameter space (the source of cosmic dark matter?)

2 fb-1

- Measure top mass ± 3 GeV and W mass ± 25 MeV
- Directly exclude m_H = 115 GeV
- . Significant SUSY and SUSY Higgs searches
- Probe extra dimensions at the 2 TeV (10-19 m) scale
- B physics: constrain the CKM matrix

300 pb⁻

- · Improved top mass measurement
- High p_T jets constrain proton structure
- Start to explore B_S mixing and B physics
- SUSY Higgs search @ large tan β
- Searches beyond Run I sensitivity

Each gain in luminosity yields a significant increase in reach and lays the foundation for the next steps

Complementarity

- The two detectors have different emphases
 - CDF detector emphasizes charged particle tracking
 - DØ detector emphasizes calorimetry, standalone muon system
- Use complementary technologies and approaches
- We believe they have comparable reach for the physics of interest in the later stages of Run II (top, W/Z, high- p_T jets, SUSY, Higgs)
 - Acceptances, lepton, jet and b-tagging capabilities are very similar
 - Search reach is usually dominated by production cross sections and physics backgrounds

Why upgrade two detectors?

- The 1997 HEPAP subpanel suggested upgrading only one detector.
 What has changed?
 - That recommendation was made in the context of a Run III with 10³³ luminosity and 20fb⁻¹ delivered per detector before the LHC
 - Would have required more extensive (and expensive) upgrades
 - Subsequently it became clear that this accelerator performance was not reasonably achievable
- The Run II Physics Workshops (1998-2000) emphasized that the best way to maximize physics reach is to operate two detectors and combine their results
 - Achieves a doubling of the effective luminosity with very low technical risk
 - Maximizing luminosity is always critical at the energy frontier
 - This is the most cost-effective factor of two to be had
 - Also
 - Assures the spur of mutual competition and the ability to cross-check results
 - Gives a broader, stronger program
 - Provides insurance

Conclusions

- The Run II physics program has begun
- The combination of highest accelerator energy, excellent detectors, enthusiastic collaborations, and data samples that double every year guarantees interesting new physics results at every step.
- Each step answers important questions, and each step leads on to the next
- The goal of the Run IIb detector upgrades is to
 - maximize this physics program
 - exploit the full potential of the world's highest energy collider and the large investments we have made in the accelerator and detectors
 - Lay a firm foundation for the LHC and for future initiatives at the TeV scale

